Robust spin polarization and spin textures on stepped Au(111) surfaces.

نویسندگان

  • Jorge Lobo-Checa
  • Fabian Meier
  • Jan Hugo Dil
  • Taichi Okuda
  • Martina Corso
  • Vladimir N Petrov
  • Matthias Hengsberger
  • Luc Patthey
  • Jürg Osterwalder
چکیده

The influence of structural defects, in the form of step lattices, on the spin polarization of the spin-orbit split Shockley surface state of Au(111) has been investigated. Spin- and angle-resolved photoemission data from three vicinal surfaces with different step densities are presented. The spin splitting is preserved in all three cases, and there is no reduction of the spin polarization of individual subbands, including the umklapp bands induced by the step lattice. On the sample with the highest step density studied, where the wave functions are delocalized over several terraces, the spin splitting is enhanced substantially, likely as an effect of the effective surface corrugation as on related surface alloys. The spin texture shows in all cases spin polarization vectors tangential to the Fermi circles, with the same helicities as on Au(111).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of atomic hydrogen with monometallic Au(100), Cu(100), Pt(100) surfaces and surface of bimetallic Au@Cu(100), Au@Pt(100) overlayer systems: The role of magnetism

The spin-polarized calculations in generalized gradient approximation density–functional theory (GGA–DFT) have been used to show how the existence of second metals can modify the atomic hydrogen adsorption on Au (100), Cu (100), and Pt (100) surfaces. The computed adsorption energies for the atomic hydrogen adsorbed at the surface coverage of 0.125 ML (monolayer) for the monometallic Au (100), ...

متن کامل

Au / Si ( l l l ) and the Formation of Silicides at the Interface Examined by Spin - Resolved Photoemission

Au on Si(111) in the 1 x 1 structure for different coverages and in the ~/3 x ~/3R30 °, and the 5 x 1 reconstructions has been studied by means of spin-, angle-, and energy-resolved photoemission. The photoemission studies were performed at normal incidence of the circularly polarized light and normal electron emission. In addition to Auand Si-derived peaks other highly spin-polarized peaks are...

متن کامل

SPIN POLARIZATION EFFECT IN THE THEORY OF MAGNETIC SCATTERING FROM ANTIFERRO- MAGNETIC NiO (111) SURFACES BY POLARIZED LOW ENERGY ELECTRON DIFFRACTION*

Dynamical calculations are performed to determine the differential cross section of low energy electrons scattered from antiferromagnetic NiO (111) surfaces. We find that the spin-dependence of this quantity with respect to the incident electron polarization depends strongly on: (1) the magnetization of the topmost layer, (2) the exchange potential model used, and (3) the incident beam angle.

متن کامل

Current-induced spin polarization on metal surfaces probed by spin-polarized positron beam

Current-induced spin polarization (CISP) on the outermost surfaces of Au, Cu, Pt, Pd, Ta, and W nanoscaled films were studied using a spin-polarized positron beam. The Au and Cu surfaces showed no significant CISP. In contrast, the Pt, Pd, Ta, and W films exhibited large CISP (3~15% per input charge current of 10(5) A/cm(2)) and the CISP of Ta and W were opposite to those of Pt and Pd. The sign...

متن کامل

Adsorption of iron tetraphenylporphyrin on (111) surfaces of coinage metals: a density functional theory study

The adsorption of the iron tetraphenylporphyrin (FeTPP) molecule in its deckchair conformation was investigated on Au(111), Ag(111) and Cu(111) surfaces by performing spin-polarized density functional theory (DFT) calculations taking into account both van der Waals (vdW) interaction and on-site Coulomb repulsion. The deckchair conformation of the molecule favours intermolecular π-π-type interac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 104 18  شماره 

صفحات  -

تاریخ انتشار 2010